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The eigenmodes analysis of Bloch modes in a chain of metallic nanowires (MNWs) provides a significant physical
understanding about the light propagation phenomena involved in such structures. However, most of these
analyses have been done above the light line in the dispersion relation, where the Blochmodes can only be excited
with radiative modes. By making use of the Fourier modal method, in this paper we rigorously calculate the
eigenmode and mode excitation of a chain of MNWs via the fundamental transverse magnetic (TM) mode of a
dielectric waveguide. Quadrupolar and dipolar transversal Bloch modes were obtained in an MNW chain
embedded in a dielectric material. These modes can be coupled efficiently with the fundamental TM mode of
the waveguide. Since the eigenmodes supported by the integrated plasmonic structure exhibit strong localized
surface plasmon (LSP) resonances, they could serve as a nanodevice for sensing applications. Also, the analysis
opens a direction for novel nanostructures, potentially helpful for the efficient excitation of LSPs and strong field
enhancement. © 2014 Chinese Laser Press

OCIS codes: (130.0130) Integrated optics; (250.5403) Plasmonics; (310.6628) Subwavelength structures,
nanostructures; (000.4430) Numerical approximation and analysis.
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1. INTRODUCTION
Localized surface plasmons (LSPs) are surface electromag-
netic modes associated with the collective oscillations of
the conducting electrons at the boundaries of metallic nano-
particles (MNPs) [1]. They have been extensively studied
in recent years due to their potential applications in optical
sensing nanodevices [2]. This is because the resonance wave-
length of the LSP is highly dependent on the geometry of the
particle and on the refractive index of the surrounding
medium. Furthermore, LSP modes provide a highly confined
electromagnetic field that can be used to probe a very small
volume of matter [3].

Light propagation through periodic arrays of MNP or met-
allic nanowires (MNWs) has already been demonstrated in
several previous works [4–10]. This propagation mechanism
is explained by LSP near-field coupling between consecutive
particles excited at their dipolar resonances. Due to this cou-
pling effect, the MNP or MNW chains can behave as a metallic
waveguide.

The coupling effect can be well understood with an eigen-
mode scrutiny of the plasmonic modes in the MNP chain.
However, the large majority of the analysis has been done
above the light line in the dispersion relations [9–12], where
the modes of the chain can be excited only with radiative
modes, that is, from the free space or from the substrate.
The longitudinal (L), transverse out-of-plane (T2) [12], and
higher multipolar chain modes [13] are among the eigenmodes
that are reported above the light line region.

In order to study the MNP mode excitation below the
light line limit, MNP chains integrated on top of a dielectric
waveguide have been proposed [14–16], but the choice of

the incident transverse electric (TE) mode of the waveguide
limits the excitation of one kind of chain mode, namely the
transverse dipolar (T1) chain mode [17,18].

Here we study the modes supported by a periodic array of
MNWs below the light line in the dispersion relation and their
excitation with the fundamental transverse magnetic (TM)
mode of a dielectric waveguide placed in close proximity
of the MNW array. To do so, we first analyze the isolated
MNW chain embedded in a homogeneous dielectric medium,
then on top of a dielectric substrate, and finally approaching a
dielectric waveguide. The analysis was done by using the Fou-
rier modal method (FMM) for nonperiodic structures.

The paper is organized as follows: after a general presenta-
tion of the theoretical model, eigenmode dispersion relations
are computed and analyzed for a MNW chain embedded in
three different background media: (1) in a homogeneous glass
medium, (2) on top of a silicon nitride substrate, and (3) on top
of a silicon nitride waveguide. Finally, we deeply study a prac-
tical implementation of the latter structure with calculations
on beam propagation and spectral responses.

The numerical results show that there is a mode coupling
effect between the dielectric and the plasmonic waveguide, an
effect that could be applied in the design of an integrated plas-
monic sensing device.

2. NUMERICAL METHOD
The numerical method developed in this work is grounded on
the so-called FMM, also known as rigorous coupled wave
analysis (RCWA), which relies on a rigorous electromagnetic
model based on the description of the Maxwell equations in
the frequency domain. It is based on the Fourier series
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expansions of the dielectric function and the electromagnetic
field [19]. With this formulation is possible to find the eigenm-
odes supported by a chain of MNPs of any shape immersed in
a multilayered medium (its dispersion relations) and also to
simulate the beam propagation through the structure. By mak-
ing use of the effective index method, it is also possible to ex-
tend the numerical model into a three-dimensional simulation.

The general solution of this method involves two
main steps:

1. Calculation of the eigenvalues and the eigenvectors
of a matrix with constant elements that characterizes the
diffracted wave propagation and coupling (the eigenvectors
represent the characteristic modes of the periodic array) in
a profile of the propagation axis, as well as the effective
indices corresponding to these modes;

2. The resolution of a linear system deduced by the boun-
dary conditions for normal and tangential components of the
electric and magnetic fields to reconstruct the total field.

The characteristic matrix of the multilayered structure is
the product of the characteristic submatrices in each layer.
A detailed description of this method can be found in the work
published by Chateau and Hugonin [19] and also in other
references [20–23]. Here we mention only the generalities
of the method. It must be remarked that we use the Fourier
factorization rules proposed by Li [24], but in order to improve
the numerical convergence, other methods can also be
applied [25,26].

A. Dispersion Relations
Since the multilayered structure to be analyzed includes a
periodic array of metallic nanowires, it supports Bloch
electromagnetic eigenmodes. These modes can be calculated
by solving the general solution of the Maxwell equations in the
frequency domain as a sum of propagative and counterpropa-
gative plane waves. Taking into account the invariance of the
structure along the y axis [Fig. 1(a)], the resulting Helmholtz
equation for TE or TM polarization modes can be regarded as
an eigenvalue problem. Using the boundary conditions for
normal and tangential components of the field, the eigenmo-
des can be calculated with the S scattering matrix algorithm
[24] that associates the incoming and outgoing fields after the
interaction with a multilayered structure with the relationship
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where S�q� is a matrix associated with the characteristic
matrix and with the effective index, including the angle of
incidence and the period of the structure, and F
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incoming and outgoing fields in the qth layer. The Bloch
modes are then determined by finding the complex solutions
of the relationship det�S−1�αp��, where αp is the normalized
propagation constant [5].

It must be noted that as we are working in the frequency
domain for a single section of the structure, the Bloch modes
are the solution of an infinite number of nanowires in the
reciprocal space, bounded in the transversal direction.

B. Beam and Mode Propagation
For the propagation of the field under a particular guided
mode excitation, we make use of a similar procedure than that
used before, but in this case we compute the modes perpen-
dicularly to the propagation axis. In other words, the periodic-
ity of the structure and the Fourier transform are taken along
the x axis [Fig. 1(b)], and the number of nanowires is now
finite.

The structure is subdivided into several sections invariant
along the propagation direction. Then we include perfectly
matched layers (PMLs) at the top and bottom of these sections
in order to absorb the light scattered by the section and to
avoid any reflections at the edges of the finite computational
window of size Δ. For each section, we compute the modes as
an eigenvalue problem [19] with the use of a Fourier expan-
sion of the permittivity and the electromagnetic field, and of R
and S matrix algorithms [22]. The mode propagation through
the structure is then a linear combination or Fourier expan-
sion of different propagative as well as contrapropagative
modes. Finally, the amplitudes of each mode at every section
are calculated from the initial conditions at the edges of the
structure and from the continuity of the tangential compo-
nents of the electric and magnetic fields at the interface
of two successive sections [24]. The method allows us to
obtain the transmission and the reflection of the field along
the dielectric waveguide as well as intensity maps of the
electromagnetic field in the structure. The absorption is deter-
mined with the relationship [27]

hPabsi � −

1
2
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where ε00r is the imaginary part of the dielectric function. The
components of the electric field can be determined from the
magnetic field via

Ex � i

ck0ε0εr

∂Hy

∂z
; (3)

Ez �
−i

ck0ε0εr

∂Hy

∂x
: (4)

To normalize the absorption in Eq. (2), we divide it by the
incident power given by

Fig. 1. (a) Schematic representation of a unitary cell used for the
calculation of the dispersion relations as an eigenvalue problem.
The periodicity Λ is along the z axis. (b) Scheme for the calculation
of the beam propagation. A unitary cell contains a finite number of
nanowires along the propagation direction (z axis), and the periodic-
ity Δ is now along the x axis including PMLs.
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for TE polarization, and
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for TM polarization. Although the method is valid for TE or
TM polarized fields, we consider only the TM polarization
to excite LSP resonances supported by the MNW.

3. NUMERICAL EXAMPLES
In order to validate the numerical method and to show its
implementation in a stratified system, we present the results
of the modal analysis for three cases. The first [Fig. 2(a)]
consists of an infinite periodic array of gold nanowires
of width w � 80 nm, height e � 150 nm, and period
Λ � 130 nm, immersed in a homogeneous glass medium
with refractive index nd � 1.5. The second case [Fig. 2(b)]
corresponds to the same MNW array deposited on a dielec-
tric substrate of refractive index closed to silicon nitride
nsub � 2.0. Finally, the third example presents the dispersion
analysis for the case of an integrated structure consisting of
a silicon nitride waveguide of thickness h1 � 200 nm and
core refractive index nw � 2.0, approached to a distance
h2 � 30 nm below the MNW chain [Fig. 2(c)]. The thickness
and refractive index of the dielectric waveguide were previ-
ously calculated to support only the TM0 fundamental mode
in a spectral range from 400 to 1500 nm. The values of the
dielectric function of gold were taken from the list of
Palik [28].

A. Isolated MNW Chain
The calculated dispersion relation of the MNW array
immersed in a homogeneous medium with refractive index
nd � 1.5 presents two Bloch modes [Fig. 3(a)]. As described
in the previous section, the modes are solutions of the eigen-
value problem.

To identify the nature of each eigenmode branch, we
calculated the energy density maps and their corresponding
electric field lines distribution at the edge of the first Brillouin
zone (at the Bragg condition) (Fig. 4). For the branch in the
wavelengths range λ ∈ �540–660� nm, we recognize periodic
quadrupolar-like LSP excitations [Fig. 4(a)] with a phase shift
of π rad between adjacent nanowires, while for the second
branch [λ ∈ �900–1500� nm], a dipolar-like LSP resonance
perpendicular to the z axis is observed [Fig. 4(b)]. This means
that if the MNWs are excited at their LSP resonance, they
behave as a waveguide system.

The propagation distance (Lp) of the Bloch modes is
obtained with the use of the equation Lp � 1∕�2k00�, where
k00 is the imaginary part of the wave vector. As can be seen
in Fig. 3(b), the propagation distance of the upper Bloch mode
branch (quadrupolar mode) varies from 0.19 to 5.6 μm, while
for the lower branch (transversal mode) the propagation dis-
tance is larger, varying from 4 to 31 μm.

Fig. 2. Schemes of (a) the periodical array of gold nanowires im-
mersed in a homogeneous dielectric medium with refractive index
nd � 1.5. The height of the nanowires is e � 150 nm, the width is
w � 80 nm, and the period is Λ � 130 nm. (b) The same MNW chain
on a substrate of refractive index nsub � 2.0, and (c) an integrated
structure of MNW on a dielectric waveguide with core index nw � 2.0.

Fig. 3. (a) Dispersion relations for the quadrupolar (upper branch)
and dipolar transversal (lower branch) Bloch modes. The propagation
distance of the (b) quadrupolar branch is shorter than that of the
(c) dipolar transversal mode.
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We must remark that when the height of the nanowires is
decreased, for example at e � 20 nm (calculation not shown),
the transversal Bloch mode [Fig. 4(b)] vanishes, and the quad-
rupolar Bloch mode [Fig. 4(a)] becomes a dipolar resonance
parallel to the z axis.

B. MNW Chain on a Substrate
When the MNW array is placed on a dielectric substrate
(nsub � 2.0) and surrounded with the same homogeneous
dielectric medium (nd � 1.5), we obtained three branches
in the dispersion relations [Fig. 5(a)]. The ones at the
top and the bottom are again related to the quadrupolar
[Fig. 5(b)] and dipolar transversal [Fig. 5(d)] Bloch modes,
respectively. They are, however, shifted in spatial frequency
relative to those of the isolated MNW array because of the
presence of the substrate, which induces changes in the k
wave vector.

The middle branch belongs to the excitation of a surface
plasmon polariton (SPP)-like mode. This is because the ap-
plied field induces longitudinal dipoles at the metal–substrate
interface, and since the separation of the MNWs is smaller
than their width (w < g), a dipolar interaction arises between
them, like in a metallic layer [Fig. 5(c)]. This resonance only
exists when the light propagating in the MNPs and in the di-
electric medium have the same k wave-vector values. In this
case, this condition is only achievable when the resonance is

below the light line of the substrate, and this is why the branch
exhibits a cutoff just at this limit.

The previous results suggest that if a dielectric waveguide
is approached to the structure, it is possible to have a

Fig. 4. Energy density maps and electric field distribution at the
Bragg condition for (a) the quadrupolar Bloch mode at λ � 540 nm
and (b) the dipolar transversal Bloch mode at λ � 916 nm. The cor-
responding squares show the phase distributions and orientation of
the charges.

Fig. 5. (a) Dispersion relation of the MNW chain on a dielectric sub-
strate (nsup � 1.5, nsub � 2.0). The top and bottom branches belong to
the quadrupolar and transversal Bloch modes, respectively. The
middle branch corresponds to the excitation of the SPP at the inter-
face between the metallic nanowires and the substrate. Energy den-
sity maps and electric field distributions at the Bragg condition for
(b) the quadrupolar mode at λ � 562 nm, (c) the SPP-like mode at
λ � 655 nm, and (d) the dipolar transversal mode at λ � 997 nm.
The charge distribution in (c) exhibits a dipolar longitudinal interac-
tion between the MNW only at the metal–substrate interface.
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directional coupling between the modes of the MNW chain
and the modes of the dielectric waveguide, as will be dis-
cussed in the next numerical example.

C. MNW Chain in an Integrated Structure
From the previous results, we concluded that under certain
conditions, the MNW chain behaves as an optical waveguide
supporting Bloch modes. These modes can be coupled to the
modes of a dielectric waveguide placed in close proximity to
the MNW chain if their respective k vectors match at a fixed
wavelength.

In the dispersion curves of Fig. 6, the upper branch of the
Bloch modes crosses the fundamental TM0 mode of the
dielectric waveguide at λ � 546 nm (k∥ � 0.843kBragg), so
their k vectors are matched. Therefore, like in a coupled wave-
guide system, antisymmetric and symmetric supermodes are
generated around this wavelength value. This anticrossing
phenomenon is typical of a directional coupler, so we expect
to have a periodical energy beating between the modes sup-
ported by the MNW chain and the mode supported by the
waveguide. Although the k vectors of the dipolar transversal
branch and that of the TM0 mode of the dielectric waveguide
do not match, an energy exchange between the MNW chain
and the dielectric waveguide could be expected. The reason
is that the leaky modes of the dielectric waveguide could
interfere with the transversal mode of the chain of gold
nanowires as its field is a highly confined field between the
nanowires. This phenomenon is demonstrated in the next
section.

4. DIRECTIONAL COUPLING AND BEAM
PROPAGATION
As was previously demonstrated, the MNW chain supports
quadrupolar and dipolar transversal Bloch modes. The
dispersion curves reveal that an efficient directional coupling
with a dielectric waveguide is expected with the quadrupolar
branch. For the dipolar transversal mode, the field is confined
between the nanowires, so an energy beating with the evan-
escent field of the dielectric waveguide is also expected.

Since the numerical method allows us to determine the
beam propagation through the integrated structure, a deeper
study of the integrated structure can be realized. To this

purpose, we calculate the normalized transmission and reflec-
tion at the input and output of the dielectric waveguide, as
well as the absorption of the structure in a spectral range from
400 to 1500 nm. Near-field maps of the amplitude of the Hy

component of the TM polarized light were calculated to prove
the energy exchange. As the beam propagation method based
in the FMM is periodic along the x axis, the number of nano-
wires now is finite. For this case we use a finite chain of
27 MNWs.

The spectral curve of Fig. 7 shows the normalized transmis-
sion, reflection, and absorption of the complete system. The
reflection curve (blue dashed) exhibits three main maxima at
λ � 465 nm, λ � 557 nm, and λ � 910 nm. They correspond
respectively to the Bragg reflection conditions of the quadru-
polar (antisymmetric and symmetric) and transversal dipolar
branches (red lines in Fig. 6). This can be verified with the
expression λBragg � 2neffΛ∕m, where neff is the effective index
of the guided mode, Λ the period of the chain of nanowires,
and m the Bragg order. For example, from the dispersion
curve, the Bragg reflection of order m � 1 for the dipolar
transversal mode has an effective index neff;transv � 3.5, giving
λBragg � 910 nm, which is the value of the third maxima in the
main reflection band. These reflections induce two minima in
the transmission curve at λ � 534 nm and at λ � 960 nm.

Efficient excitations of the quadrupolar and dipolar trans-
versal MNW chain modes are observed respectively at λ �
559 nm and at λ � 990 nm in both transmission and absorp-
tion spectra. For the first one, a directional coupling takes
place, since an anticrossing phenomenon appears in the
dispersion curves between the waveguide fundamental TM0
mode and the quadrupolar MNW branch. In Fig. 8(a) this cou-
pling effect can be confirmed, since a vertical periodic energy
beating from the dielectric waveguide to the MNW chain is
clearly observed. From the coupled mode theory, the spatial
half-period of the coupling length can be estimated by
Lc � λ∕�2Δneff�, where Δneff is the effective index difference
between the symmetric and antisymmetric modes at a given
wavelength λ, and from the dispersion curves, the calculated
effective indices are neff;1 � 1.6 and neff;1 � 1.968, resulting in
a coupling length of Lc � 759 nm.

Fig. 6. Dispersion curves of the integrated structure (red lines), the
isolated dielectric waveguide (blue), and the isolated MNW chain
(green lines). The quadrupolar Bloch mode (inset) is coupled to
the dielectric waveguide at λ � 546 nm, generating antisymmetric
and symmetric supermodes. The dipolar transversal mode does not
cross the fundamental TM0 mode of the dielectric waveguide.

Fig. 7. Transmission, reflection, and absorption spectra for the inte-
grated structure. In the transmission curve, the quadrupolar mode is
excited at λ � 559 nm, and the constructive interference of the dipo-
lar transversal mode is positioned at λ � 990 nm. The minimum at λ �
1055 nm is a cavity resonance effect. In the reflection curve, Bragg
reflections are located at λ � 465 nm, λ � 557 nm, and at λ � 960 nm.
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Concerning the excitation of the dipolar transversal mode,
the directional coupling is not the main process since no anti-
crossing phenomena occur in the dispersion curves. Never-
theless, as is depicted in Fig. 8(b), close to λ � 990 nm, the
TM0 launched mode is coupled to the array of nanowires.
A vertical energy beating is still visible (weakly contrasted)
in the intensity map and is attributed to an interference pat-
terns between guided and leaky modes. Indeed, the beating
period T at a given wavelength λ in a two-waveguide coupling
system can be obtained via T � λ∕�neff;1 − neff;2�, where neff1;2

are the effective indices of the modes supported by the
coupled waveguides. From the dispersion curves, at
λ � 990 nm, neff;1 � �λk∥�∕�2πkBragg� � 2.213, and from the
intensity map the beating period is 1.17 μm, which results
in a leaky mode effective index neff;2 � 1.36 (above the light
line in the surrounding medium nd � 1.5). The transmission
spectrum changes abruptly (between λ � 900 nm and
λ � 1100 nm) as a result of the interference between
multiple reflections at the edges of the array. The wavelength
separation between adjacent transmission minima is given by
Δλ � λ2∕�2Dneff�, where λ � 990 nm is the central wave-
length, D � �27 − 1�Λ�w � 3.46 μm is the cavity length,
and neff � 2.213 is the effective index. The calculated Δλ
agrees with the value obtained from the transmission
spectrum for the two minima located at 990 and
1055 nm (Δλ � 65 nm).

Also, as was previously predicted in the plots of Fig. 3, the
propagation distance of the quadrupolar Bloch mode is
shorter than the one of the dipolar transversal mode.

5. CONCLUSIONS
With the use of the FMM for stratified mediums, we calculated
the dispersion relation of the Bloch modes in a chain of MNWs
integrated on top of a dielectric waveguide. A quadrupolar and
a dipolar transversal LSP Bloch mode were found along the
MNW chain. When the nanowires are placed on a substrate,
a third resonance branch arises below the substrate light line
due to the excitation of an SPP at this interface which is also a
propagation mode. Besides the dispersion relation, the
numerical method allowed us to obtain near-field maps as well
as to compute the transmission, reflection, and absorption
spectra.

We demonstrated that the MNW chain behaves as a
waveguide for LSPs, whose modes can be excited with the
fundamental mode of a dielectric waveguide. A coupling of
the energy inside the nanowire array is achievable with short
coupling lengths even without perfect matching of the k∥ wave
vectors.

Since the eigenmodes supported by the nanowires exhibit
strong LSP resonances, the analyzed structure may serve as a
nanoscale integrated device for sensing applications, useful
for biological or chemical detection in Raman or localized sur-
face plasmon resonance spectroscopy methods.

The proposed integrated structure opens a direction for
new optical waveguide designs, potentially helpful on the
efficient excitation of LSPs and strong field enhancement.
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